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Abstract—The calculation of a low-rank approximation to a matrix is fundamental to many algorithms in computer vision and other

fields. One of the primary tools used for calculating such low-rank approximations is the Singular Value Decomposition, but this method

is not applicable in the case where there are outliers or missing elements in the data. Unfortunately, this is often the case in practice.

We present a method for low-rank matrix approximation which is a generalization of the Wiberg algorithm. Our method calculates the

rank-constrained factorization, which minimizes the L1 norm and does so in the presence of missing data. This is achieved by

exploiting the differentiability of linear programs, and results in an algorithm can be efficiently implemented using existing optimization

software. We show the results of experiments on synthetic and real data.

Index Terms—Low-rank matrix approximation, L1-minimization.

Ç

1 INTRODUCTION

WE are concerned with the problem of identifying two
low-rank factors of a matrix in the situation where

some of the elements of the matrix are unknown. The
problem may be stated in terms of the following optimiza-
tion problem:

min
U;V
kŴ � Y � UVð Þk; ð1Þ

where Y 2 IRm�n is a matrix containing measurements, and
the unknown factor matrices are U 2 IRm�r and V 2 IRr�n.
We let ŵij represent an element of the matrix Ŵ 2 IRm�n

such that ŵij is 1 if yij is known, and 0 otherwise. In the
general statement of the problem, k � k can be any matrix
norm, but in this work we consider the 1-norm,

kAk1 ¼
X
i;j

jaijj; ð2Þ

in particular.
The calculation of a low-rank factorization of a matrix is

a fundamental operation in many computer vision applica-
tions. It has been used in a wide range of problems,
including structure-from-motion [1], polyhedral object
modeling from range images [2], layer extraction [3],
recognition [4], and shape from varying illumination [5].

In the case where all of the elements of Y are known, the
singular-value decomposition may be used to calculate the
best approximation as measured by the L2 norm. It is often

the case in practice, however, that some of the elements of Y
are unknown. It is also common that the noise in the
elements of Y is such that the L2 norm is not the most
appropriate. In this case, the L1 norm is often used to
reduce sensitivity to the presence of outliers in the data.
Unfortunately, it turns out that introducing missing data
and using the L1 norm makes the problem (1) significantly
more difficult to solve. The first problem is that it is a
nonsmooth problem, so many of the standard optimization
tools available will not be applicable. The second is that it is
a nonconvex problem, so certificates of global optimality are
in general hard to provide. And finally, the optimization
process can also be a very computationally demanding task
when applied to real-world applications where the number
of unknowns may be very large.

In this paper, we present a method that efficiently
computes a low-rank approximation of a matrix in the
presence of missing data, which minimizes the L1 norm by
effectively addressing the issues of nonsmoothness and the
computational requirements. Our proposed method should
be viewed as a generalization of one of the more successful
algorithms for the L2 case, the Wiberg method [6].

1.1 Notation

All of the variables used in this paper are either clearly
defined or should otherwise be obvious from the context in
which they appear. Additionally, In denotes ann� n identity
matrix,� and� are the Hadamard and Kronecker products,
respectively. Upper case roman letters denote matrices and
lower case ones vectors and scalars. We also use the
convention that v ¼ vecðV Þ, a notation that will be used
interchangeably throughout the remainder of this paper.

2 PREVIOUS WORK

The subject of matrix approximation has been extensively
studied, with much of the focus being on methods
exploiting the L2 norm. These methods have had a number
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of different names, including principal component analysis,
subspace learning, and matrix or subspace factorization. In
this paper, we describe the problem in terms of the search
for a pair of matrices specifying a low-rank approximation
of a measurement matrix, but the approach is equally
applicable to any of these equivalent problems.

For an outstanding survey of many existing methods of
least L2-norm factorization see the work of [7]. This paper
also provides a direct quantitative comparison of a number
of key methods, but unfortunately this does not include the
Wiberg algorithm [6]. This method, which was first
proposed more than 30 years ago, has been largely
misunderstood or neglected by computer vision research-
ers, an issue which was addressed in the excellent work of
[8], effectively reintroducing the Wiberg algorithm to the
vision community. It was also shown there that on many
problems the Wiberg method outperforms many of the
more recent methods.

The subject of robust low-rank matrix approximation has
not received as much attention within the computer vision
literature as it has in other areas (see [9], [10], for example).
This is beginning to be addressed, however. A very good
starting point toward a study of more robust methods,
however, is the work of [11]. One of the first methods
suggested within the computer vision literature was
Iteratively Reweighted Least Squares, which minimizes a
weighted L2 norm [12]. The method is unfortunately very
sensitive to initialization (see [13] for more detail).

Black and Jepson [14] describe a method by which it is
possible to robustly recover the coefficients of a linear
combination of known basis vectors that best reconstructs a
particular input measurement. This might be seen as a
robust method for the recovery of V given U in our context.
De La Torre and Black [11] present a robust approach to
Principal Component Analysis which is capable of recover-
ing both the basis vectors and coefficients which is based on
the Huber distance.

Croux and Filzmoser [15] suggested the L1 norm as a
method for addressing the sensitivity of the L2 norm to
outliers in the data. The approach they proposed was based
on a weighting scheme which applies only at the level of
rows and columns of the measurement matrix. This means
that if an element of the measurement matrix is to be
identified as an outlier, then its entire row or column must
also be so identified.

Ke and Kanade [13] present a factorization method based
on the L1 norm which does not suffer from the limitations
of the Croux and Filzmoser approach and which is achieved
through alternating convex programs. This approach is
based on the observation that, under the L1-norm, for a
fixed U , the problem (1) can be written as a linear problem
in V , and vice versa. A succession of improved matrix
approximations can then be obtained by solving a sequence
of such linear programs, alternately fixing U and V . It was
also shown there that one can solve for the Huber-norm, an
approximation to the L1-norm, in a similar fashion, with the
difference that each subproblem becomes a quadratic
problem. Both of these formulations result in convex
subproblems for which efficient solvers exist; however, this
does not guarantee that global optimality is obtained for the
original problem in the L1-norm.

The recent work of [16] also deals with robust low-rank
matrix approximations. This excellent work proves that,
under certain assumptions in regard to the structure of the

error matrix, the noise levels, and the rank of the underlying
matrix, a low-rank matrix corrupted by a sparse-error
matrix can be recovered exactly with very high likelihood.
However, these assumptions are not guaranteed to hold in
practical applications, in which case the recovered matrices
can be entirely incorrect.

The work in [17] also needs mentioning. Here, the
authors apply Branch and Bound and convex under-
estimators to the general problem of bilinear problems,
which includes (1), both under L1 and L2 norms. This
approach is provably globally optimal, but is, in general,
very time consuming and, in practice, only useful for small
scale problems.

2.1 The Wiberg Algorithm

As previously mentioned, the Wiberg algorithm is a
numerical method developed for low-rank matrix approx-
imation using the L2-norm in the case where some of the
data is missing. This section provides a brief description of
the underlying ideas behind this method in an attempt to
motivate some of the steps taken in the derivation of our
generalized version to come.

The Wiberg algorithm is based on the observation that,
for a fixed U , the L2-norm version of (1) becomes a linear,
least-squares minimization problem in V :

min
v
kWy�WðIn � UÞvk2

2; ð3Þ

where W ¼ diagðŵÞ. The closed-form solution for the
optimal is

v�ðUÞ ¼ ðGðUÞTGðUÞÞ�1 GðUÞWy; ð4Þ

where GðUÞ ¼W ðIn � UÞ. Similarly, for a fixed V , (1)
becomes a linear least-squares minimization problem in U :

min
u

��Wy�W
�
V T � Im

�
u
��2

2
; ð5Þ

with the optimal u given by

u�ðV Þ ¼ ðF ðV ÞTF ðV ÞÞ�1F ðV ÞWy; ð6Þ

where F ðV Þ ¼WðV T � ImÞ.
Here, it should be mentioned that alternatively fixing U

while updating V , and vice versa (using (4) and (6)), was
one of the earliest algorithms for finding matrix approx-
imations in the presence of missing data. This process is
known as the Alternated Least Squares (ALS) approach.
The disadvantage of this approach, however, is that it has in
practice been shown to converge very slowly (see [7], for
example). The alternated LP and QP approaches of [13]
were motivated by this method.

Continuing with the Wiberg approach, by substituting
(4) into (5) we see that the optimum of (5) is also the
optimum of

min
U
kgðUÞk2

2 ¼ min
U
kWy�WvecðUV �ðUÞÞk2

2; ð7Þ

where the function gðUÞ ¼Wy�WvecðUV �ðUÞÞ is intro-
duced to emphasize the fact that (7) represents a nonlinear
least-squares problem in U . It is the application of the
Gauss-Newton method [18] to the above problem that
results in the Wiberg algorithm. The difference between the
Wiberg algorithm and ALS may thus be interpreted as the
fact that the former effectively computes Gauss-Newton
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updates while the latter carries out exact cyclic coordinate
minimization.

As such, the Wiberg algorithm generates a sequence of
iterates Ukþ1 by repeatedly calculating a first-order Taylor
expansion of g at Uk and solving the resulting subproblem:

min
�
kgðUkÞ þ

@gðUkÞ
@U

ðuk � �Þk2
2: ð8Þ

If we let Jk denote the Jacobian @gðUkÞ
@U , we can write the

solution to (8) as

��k ¼
�
JTk Jk

��1
JTk Wy; ð9Þ

the well-known normal equation. The next iterate is then
given by

Ukþ1 ¼ Uk þ ��k: ð10Þ

3 DIFFERENTIATING THE L1 SOLUTION OF AN

OVERDETERMINED SYSTEM OF LINEAR

EQUATIONS

In the previous work [19], the derivation of an L1 version of
the Wiberg algorithm was based on the differentiation of
linear programs in canonical form. Here, we present a
slightly different derivation resulting in a simpler and more
computationally efficient formulation.

This section deals with the sensitivity of the L1 solution
of an overdetermined system of linear equations with
respect to changes in the coefficients. The problem we are
considering is the following:

min
x2IRn
kb�Axk1; ð11Þ

b 2 IRm, A 2 IRm�n, m � n. It can furthermore be assumed,
for our purposes and without loss of generality, that A has
full rank.

Note that (11) is equivalent to the linear program

min 1T t

s:t:� t 	 b�Ax 	 t
x 2 IRn; t 2 IRm:

ð12Þ

Now, from [20] we have the following theorem and
corollary.

Theorem 3.1. Let X� denote the set of all minimizers of the
convex optimization problem

min
x2IRn
kb�Axk1: ð13Þ

Then, there always exists a solution x� 2 X� such that b�
Ax� has at least n entries equal to zero.

Corollary 3.1. The submatrix of A consisting of the rows of A
corresponding to Zðx�Þ must have rank n for some solution x�

to 13.

For proofs see [20, Section 6]. Here, Zðx�Þ denotes the set
of indices for which the residual is zero, Zðx�Þ ¼ fi ¼ 1; . . . ;
mj½b�Ax�
i ¼ 0g. We also include an additional corollary
which follows trivially from the above.

Corollary 3.2. Let Znðx�Þ denote all subsets of Zðx�Þ contain-
ing n elements. Then, there exists a z 2 Znðx�Þ such that the

submatrix consisting of the corresponding rows of A is of
full rank.

Assuming that a minimizer x� of the linear program (11),
or equivalently (12), has been obtained using some
optimization algorithm, we are interested in how this
minimizer changes as we alter the coefficients of the linear
equation system. That is, we wish to compute the partial
derivatives @x�=@Aij and @x�=@bi.

Theorem 3.2. Let x� be the minimizer (11). We further assume
that the n-by-n submatrix of Corollary 3.2, denoted B, is
unique. Reordering the rows of A and b, if necessary, there
exists one or more partitions such that

A ¼ B
N

� �
; ð14Þ

b ¼ bB
bN

� �
: ð15Þ

Then, x� is differentiable at A, b with the partial derivatives
given by

@x�

@B
¼ �ðx�ÞT �B�1; ð16Þ

@x�

@N
¼ 0; ð17Þ

@x�

@bB
¼ B�1; ð18Þ

@x�

@bN
¼ 0: ð19Þ

Proof. According to Theorem 3.1, we have that

bB �Bx� ¼ 0; ð20Þ

by Corollary 3.2, B is of full rank, so

x� ¼ B�1bB: ð21Þ

Since B is a smooth bijection from IRn onto itself, it
follows that x� is differentiable with respect to the
coefficients in A and b. Differentiating (21) gives (16):

@x�

@B
¼ @

@B
ðB�1bBÞ

¼
�
bTB � Im

� @B�1

@B

¼ �
�
bTB � Im

�
ðB�T �B�1Þ

¼ �ðx�ÞT �B�1:

Equations (17), (18), and (19) follow trivially. tu

4 THE L1-WIBERG ALGORITHM

In this section, we present the derivation of a generalization
of the Wiberg algorithm to the L1-norm. We follow a similar
approach to the derivation of the standard Wiberg
algorithm above, that is, by rewriting the problem as a
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function of U only, then linearizing it, solving the resulting
subproblem, and updating the current iteration using the
minimizer of said subproblem.

Our starting point for the derivation, our generalization
of the Wiberg algorithm, is the minimization problem

min
U;V

f 0ðU; V Þ ¼ kg0ðU; V Þk1

¼ kŴ � Y � UV Þk1:ð
ð22Þ

Following the approach of Section 2.1, we first note that for
fixed U and V it is possible to rewrite the optimization
problem (22) as

v�ðUÞ ¼ arg min
v
kWy�WðIn�Þvk1 ð23Þ

and

u�ðV Þ ¼ arg min
u
kWy�WðV T � ImÞuk1 ð24Þ

linear problems in V and U , respectively.
Substituting (23) into (24), we obtain

U� ¼ arg min
U
fðUÞ

¼ arg min
U
f 0ðU; V �ðUÞÞ

ð25Þ

¼ arg min
U
kg0ðU; V �ðUÞÞk1

¼ arg min
U
kWy�WvecðUV �ðUÞÞk1

¼ arg min
U
kgðUÞk1:

ð26Þ

Unfortunately, (26) is not a least-squares minimization
problem, so the Gauss-Newton algorithm is not applicable.
Note also that V � does not have an easily differentiable,
closed-form solution, but the results of the previous section
allow us to continue in a similar fashion.

Let V �ðUÞ denote the optimal solution of (23) and z is the
corresponding set of n indices of Corollary 3.2. Assuming
that the prerequisites of Theorem 3.2 hold, then V �ðUÞ is
differentiable and we can compute the Jacobian of the
nonlinear function �1ðUÞ. Denote by Q the n-by-mn matrix
obtained by removing the rows not corresponding to
indices in z from the identity matrix Imn. Then, we can write

v� ¼ G�1
B QWy ¼ ðQGÞ�1QWy: ð27Þ

Using (16) and applying the chain rule, we obtain

@v�

@U
¼ @

@U

�
G�1
B QWy

�
¼ �

�
ðv�ÞT �G�1

B

� @GB

@U
¼ �G�1

B

@GB

@U
v�

ð28Þ

and

@GB

@U
v ¼ @

@U
GBvð Þ ¼ @

@U
QWðIn � UÞvð Þ

¼ @

@U

�
QW

�
V T � Im

�
u
�
¼ QW

�
V T � Im

�
¼ QF ¼ FB:

ð29Þ

Combining the above expressions, we see that

JðUÞ ¼ @g

@U
¼ F þG@v

�

@U
¼ F �GG�1

B FB: ð30Þ

The Gauss-Newton method, in the least-squares case,

works by linearizing the nonlinear part and solving the

resulting subproblem. By (30) the same can be done for gðUÞ.
Using (30), the first-order Taylor expansion of g results in

the following approximation of f (from (25)) around Uk:

fð�Þ � qkð�Þ ¼ kgðUkÞ þ JðUkÞ �k1: ð31Þ

This allows the construction of an approximation to (26):

min
�
kgðUkÞ þ JðUkÞ�k1; ð32Þ

and as in the L2 case this is a linear problem, but now in �.

This minimization problem may be stated as

min
�;t
½ 0 1T 


�

t

� �

s:t:
�JðUkÞ �I
JðUkÞ �I

� �
�

t

� �
	
�gðUkÞ
gðUkÞ

� �

k�k1 	 �k
� 2 IRmr; t 2 IRmn:

ð33Þ

Let ��k be the minimizer of (33), then the update rule for our

proposed method is again given by

Ukþ1 ¼ Uk þ ��k: ð34Þ

Note that in (33), we have added the constraint k�k1 	 �k.
This is done as a trust region strategy to limit the step sizes

that can be taken at each iteration to ensure a nonincreasing

sequence of iterates. See below for details on how the step

length �k is handled. We are now ready to present our

complete L1-Wiberg method in Algorithm 1.

Algorithm 1. L1-Wiberg Algorithm.

1: Input:

U0 2 IRm�r, �0 > 0, 1 > �2 > �1 > 0 and c > 1

2: k ¼ 0.

3: V0 ¼ V �ðU0Þ
4: repeat

5: Compute the Jacobian r�1 ¼ JðUkÞ using (30)

6: Solve the subproblem (33) to obtain ��yk

7: Let �k ¼ �fk
�qk
¼ fðUkÞ�fðUkþ��kÞ

fðUkÞ�qð��kÞ
8: if �k 	 �1 then

9: �kþ1 ¼ �1k��kk1

10: end if

11: if �k � �2 then

12: �kþ1 ¼ c�k
13: end if

14: if �k � � then

15: Ukþ1 ¼ Uk þ ��k
16: Vk þ 1 ¼ V �ðUk þ ��kÞ
17: k ¼ kþ 1

18: end if

19: until convergence

Typical parameter values used were �0 ¼ 1, �1 ¼ 1
4 ,

�2 ¼ 3
4 , � ¼ 10�3, and c ¼ 2.

y If ��k ¼ 0 and ðUk; VkÞ is not a stationary point of (1) then

simply chose a different z 2 Z and repeat 6.
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Proper initialization is a crucial issue for any iterative
algorithm and can greatly affect its performance. Obtaining

this initialization is highly problem dependent; for certain
applications good initial estimates of the solution are
readily available and for others finding a sufficiently good

U0 might be considerably more demanding. In this work,
we either initialized our algorithm randomly or through the

rank-r truncation of the singular-value decomposition of
Ŵ � Y .

5 PROOF OF CONVERGENCE

In this section, we show under what conditions Algorithm 1
converges to a stationary point of (22). The starting point of
this proof is the work on nonsmooth optimization by [21],

[22], [23], [24]. There, the problem investigated is the
unconstrained minimization of nonsmooth, composite

functions of the form hðfðxÞÞ, where h is a nonsmooth
convex function from IRm to IR and f is a continuously

differentiable function IRn to IRm. They propose an iterative
trust region algorithm to solve this problem. At each
iteration the following convex subproblem is solved:

min
k�k	�k

�kð�Þ ¼ hðfðxkÞ þ rfðxkÞ�Þ þ�TBk�; ð35Þ

where Bk is some symmetric n� n matrix. The updating of
xk and �k are handled in the same manner as in Algorithm 1.

It was shown in the above work that under certain
conditions, most significantly that kBkk is uniformly

bounded, then the above algorithm will have an accumu-
lation point x� which is a stationary point of (1); see [23]

for details.
Since here, in subproblem (26), the function gðUÞ ¼

Wy� vecðUV �ðUÞÞ is not differentiable everywhere, we

cannot apply this result directly. However, we are still able
to show objective convergence to a stationary point of the

proposed algorithm in the following theorem.

Theorem 5.1. Let fUk; Vkg1k¼1, with Vk ¼ V �ðUkÞ, denote the

sequence produced by Algorithm 1. Then, f 0ðUk; VkÞ will

converge to a stationary point of (1).

Proof. As mentioned above, since gðUÞ is not differentiable

everywhere we cannot apply the result of [21], [22], [23],
[24] directly. However, we know that the function

f 0ðU; V Þ of (22) is a smooth function, and consequently
any convergent sequence of symmetric matrices Bk will
generate a sequence of iterates fUk; Vkg1k¼1 whose func-

tion values converge to a stationary point of (22). If we
can show that there exists such a sequence fBkg1k¼1 that

produces the same sequence of iterates fUk; Vkg1k¼1 as
Algorithm 1, then it must follow that Algorithm 1 has

objective convergence to a stationary point of (22).
With hð:Þ ¼ k:k1, let @hðuk; vkÞ denote the subdiffer-

ential of h at ðuk; vkÞ. Also, let O denote the set fi ¼ 1; . . . ;
mnjgiðUkÞ ¼ 0; i 62 zg and N is its complement. Then,
(35) becomes

min
k�k	�k

�kð�Þ ¼ kgðUkÞ þ F G½ 
�k1 þ�TBk�: ð36Þ

With first-order optimality conditions given by

FT

GT

� �
�þ 2Bk�þ 	
 ¼ 0; ð37Þ

� 2 @hðuk þ�u; vk þ�vÞ, � ¼ ½�u

�v

, 
 2 @hð�u;�vÞ, and

	 � 0 a Lagrangian multiplier. If � is bounded away

from zero, then the above system equations is under-

determined and linear in the entries of Bk and there must

exist a bounded and symmetric matrix Bk such that (37)

holds. Specifically, there exist a bounded Bk such that the

solution of (36) fulfills ½ukþ1

vkþ1

 ¼ ½ukvk 
 þ��.

Due to the scale ambiguity of f 0ðU; V Þwe can, without
loss of generality and for the purpose of this proof,
assume that kUkk 	 1, then the level set L ¼ fU; V j
kUkk 	 1; f 0ðU; V Þ 	 f 0ðU0; V0Þg is compact and, conse-
quently, the sequence fUk; Vkg1k¼1 is bounded. It was
shown in [23], [24] that �! �� > 0, i.e., that the trust
region constraints are not active for k greater than some
k0. Then, if � ¼ 0, by the first-order conditions of (23)
and (33), there must exist a �� ¼ ½ ��B��O
 2 @hð

�U; �V Þ such that

�
FT
O � FT

BG
�T
B GT

O

�
��O þ

�
FT
N � FT

BG
�T
B GT

N

�
sNð �U; �V Þ ¼ 0;

ð38Þ

GT
B

��B þGT
O

��O þGT
NsNð �U; �V Þ ¼ 0; ð39Þ

where sNðU; V Þ ¼ sgnðvecðUV ÞÞ for the indices in N . By

elimination, we obtain

FT
B FT

O FT
N

GT
B GT

O GT
N

� � ��B
��O

sNð �U; �V Þ

2
4

3
5 ¼ 0: ð40Þ

Then,

� ¼
��B
��O

sNð �U; �V Þ

2
4

3
5

is a solution to (37) with Bk ¼ �B ¼ 0, and it follows that

there exists a sequence of symmetric matrices Bk for

which kBkk is bounded and such that (36) produces the

same sequence of iterates fUk; Vkg1k¼1 as Algorithm 1.
Finally, as the sequence ff 0ðUk; VkÞg1k¼1 is convergent

by construction, objective convergence to a stationary
point follows. tu

6 EXPERIMENTS

In this section, we present a number of experiments carried

out to evaluate our proposed method. These include real

and synthetic tests.
We have evaluated the performance of the L1-Wiberg

algorithm against other available methods, including those

of Ke and Kanade in [13] (alternated LP and alternated QP).
We did also look into the method of [16], but as this

approach failed to produce any sensible results in the real-

world applications of Sections 6.2, 6.3, and 6.4, we omitted

such a comparison altogether.
All algorithms were implemented in Matlab. Linear and

quadratic optimization subproblems were solved using the

package MOSEK.
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6.1 Synthetic Data

The aim of the experiments in this section was to
empirically obtain a better understanding of the following
properties of each of the tested algorithm: resulting error,
rate of convergence, execution time, and the computational
requirements.

For the synthetic tests, a set of randomly created
measurement matrices was generated. The elements of
each measurement matrix Y were drawn from a uniform
distribution in the range ½�1; 1
. A set of 20 percent of the
elements of Y wsd chosen at random (again from a uniform
distribution) and designated as missing by setting the
corresponding entry in the matrix Ŵ to 0. In addition, to
simulate outliers, uniformly distributed noise over ½�5; 5

was added to a randomly selected 10 percent of the
elements in Y . Three different problem sizes were con-
sidered: ðm ¼ 10; n ¼ 15; r ¼ 5Þ, ðm ¼ 25; n ¼ 50; r ¼ 7Þ,
and ðm ¼ 40; n ¼ 150; r ¼ 9Þ.

Fig. 1 shows a histogram of the error produced by each
algorithm on 100 synthetic matrices, created as described
above. It can be seen in this figure that our proposed method
clearly outperforms the other two. But what should also be
noted here is the poor performance of the alternated linear
program approach. Even though it can easily be shown that
this algorithm will produce a nonincreasing sequence of
iterates, there is no guarantee that it will converge to a local
minima. This is what we believe is actually occurring in these
tests. The alternated linear program converges to a point that
is not a local minima, typically after only a small number of
iterations. Due to its poor performance, we have excluded
this method from the remainder of experiments.

Next, we examine the convergence rate of the algorithms.
A typical instance of the error convergence from both the
AQP and L1-Wiberg algorithms, applied to one of the
synthetic problems, can be seen in Fig. 2. These figures are
not intended to show the quality of the final solution, but
rather how it quickly it is obtained by the competing
methods.

Fig. 3 depicts the performance of the algorithms in 100
synthetic tests and is again intended to show convergence
rate rather than the final error. Note the independent
scaling of each set of results and the fact that the Y -axis is
on a logarithmic scale. Again it is obvious that the
L1-Wiberg algorithm significantly outperforms the alter-
nated quadratic programming approach. It can be seen that

the latter method has a tendency to flatline, that is, to

converge very slowly after an initial period of more rapid

progress. This is a behavior that has also been observed for

alternated approaches in the L2 instance, see [7].
Table 1 summarizes the same set of synthetic tests. What

should be noted here is the low average error produced by

our method, the long execution time of the alternated

quadratic program approach, and the poor results obtained

by the alternated linear program method.
The results of these experiments, although confined to

smaller scale problems, do indeed demonstrate the promise

of our suggested algorithm.

6.2 Structure from Motion

Next, we present an experiment on a real-world application,

namely structure from motion. We use the well-known

dinosaur sequence, available from http://www.robots.ox.

ac.uk/~vgg/, containing projections of 319 points tracked

over 36 views. Now, finding the full 3D-reconstruction of

this scene can be posed as a low-rank matrix approximation
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Fig. 1. A histogram representing the frequency of different magnitudes of
error in the estimate generated by each of the methods.

Fig. 2. Plots showing the norm of the residual at each iteration of two
randomly generated tests for both the L1 Wiberg and alternated
quadratic.

Fig. 3. A plot showing the convergence rate of the alternated quadratic
programming and L1-Wiberg algorithms over 100 trials. The error is
presented on a logarithmic scale.



task. In addition, as we are considering robust approxima-
tion in this work, we also included outliers to the problem by
adding uniformly distributed noise ½�50; 50
 to 10 percent
of the tracked points.

We applied our proposed method to this problem,
initializing it using truncated singular-value decomposition
as described in the previous section. For comparison, we
also include the result from running the standard Wiberg
algorithm. Attempts to evaluate the AQP method on this on
the same data were abandoned when the execution time
exceeded several hours.

The residual for the visible points of the two different
matrix approximations is given in Fig. 4. The L2-norm
approximation seems to be strongly affected by the
presence of outliers in the data. The error in the matrix
approximation appears to be evenly distributed among all
the elements of the residual. In the L1 case this does not
seem to occur. Instead, the reconstruction error is concen-
trated to a few elements of the residual. The root mean
square error of the inliers only was 2.029 for the L2-Wiberg
algorithm and 0.862 for the L1-Wiberg algorithm. Total
execution times were 3 min, 2 sec and 17 min, 44 sec,
respectively. The resulting reconstructed scene can be seen
in Fig. 5.

6.3 Eigenfaces

Eigenfaces is a classical tool for analyzing images of human
faces; the earliest application was presented in [4]. Given a
number of training images, the eigenface method finds the
K-dimensional linear subspace that best describes this data.
If one disregards any orthogonality constraint, this task can
be viewed as a low-rank matrix approximation problem.

In this section, we show how using our proposed
method allows for the construction of a more eigenface
decomposition. We used 30 grayscale images randomly
selected from the CBCL data set [26], rescaled to a size of
38-by-38 pixels. The dimension of the subspace was set to
K ¼ 5. To simulate outliers we also included three addi-
tional images, significantly different from those of human
faces, Fig. 6, into the training set.

Algorithm 1 was then applied to find the best rank-2,
L1 approximation to the resulting 1,444-by-33 matrix of face
images. Fig. 7 shows the resulting reconstructed face images
using the L1 formulation as well as the standard L2-based
eigenface method.

The effect of the outlier, nonface images can clearly be
observed by the poorer performance of the standard
eigenface method. The actual reconstruction error for each
of the images can be seen in Fig. 8.

6.4 Nonrigid Motion Recovery

It was shown in [27] that the recovery of the shape of a
nonrigidly moving object from an image sequence can be
posed as a low-rank matrix approximation problem. Under
the assumption that that the nonrigid motion can be
described as the linear combination of K different shape
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TABLE 1
The Averaged Results from Running 100 Synthetic Experiments on Three Different Problem Sizes

Fig. 4. Resulting residuals using the standard Wiberg algorithm (top) and
our proposed L1-Wiberg algorithm (bottom).



basis, the tracked points in the sequence will span a

3K-dimensional subspace.
In this section, we use the shark sequence of [27] for

experimental validation. This synthetic data set consists of

91 points on a nonrigid shape (a shark) tracked along

sequence of 240 frames, under varying camera pose.

In order to obtain more realistic conditions Gaussian noise

with a variance of 3 pixels was added. In addition, 20 percent

of the tracked points were labeled missing and 10 percent of

the tracked points were replaced by gross outliers, drawn

from a uniform distribution ½�25; 25
. The number of shape

basis was set to K ¼ 2.
The resulting shape reconstructions using the L1 and L2

approximations can be seen in Fig. 9. The actual reconstruc-

tion error for a subset of the 240 frames can be seen in Fig. 10.

Here, it can be seen that the L1 clearly outperforms the

L2 formulation.

7 CONCLUSION

In this paper, we have studied the problem of low-rank

matrix approximation in the presence of missing data. We

have proposed a method for solving this task under the

robust L1 norm which can be interpreted as a generalization

of the standard Wiberg algorithm. We have also shown

through a number of experiments on both synthetic and real

world data that the L1-Wiberg method proposed is both

practical and efficient and performs very well in compar-

ison to other existing methods.
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Fig. 6. Outliers, images not containing faces.

Fig. 5. Images from the dinosaur sequence and the resulting reconstruction using our proposed method. (Visualization tool courtesy of [25].)

Fig. 7. Left: Original images. Middle: Reconstructed image using
L1-norm. Right: Reconstructed image using L2-norm. Fig. 8. Reconstruction error for the 30 face images.
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